Publications 2017

  • Aberdein, Andrew. Mathematical monsters. In Monsters, monstrosities, and the monstrous in culture and society, Diego Compagna & Stefanie Steinhart, edd. (Wilmington, DE: Vernon Press, forthcoming).
  • Aberdein, Andrew. Redefining revolutions. In The Kuhnian image of science: Time for a decisive transformation?, Moti Mizrahi, ed. (London: Rowman & Littlefield, 2017), pp. 133–54.
  • Aberdein, Andrew. Mohan Ganesalingam. The language of mathematics: A linguistic and philosophical investigation. FoLLI Publications on Logic, Language and Information. Springer, 2013. Philosophia mathematica 25(1), 2017, pp. 143–7. Online at http://my.fit.edu/~aberdein/Ganesalingam+.pdf.
  • Baldwin, John T. Axiomatizing Changing Conceptions of the geometric continuum I: Euclid-Hilbert (Oct 2017) Philosophia Mathematica, nkx030. Online at https://academic.oup.com/philmat/advance-article-abstract/doi/10.1093/philmat/nkx030/4642204.
  • Baldwin, John T. Axiomatizing Changing Conceptions of the Geometric Continuum II: Archimedes-Descarte-Hilbert-Tarski pdf (Oct 2017: first Jan 2015) Philosophia Mathematica, nkx031. Online at https://academic.oup.com/philmat/advance-article-abstract/doi/10.1093/philmat/nkx031/4656246?redirectedFrom=fulltext.
  • Baldwin, John T. The explanatory power of a new proof: Henkin’s completeness proof. In M. Piazza and G. Pulcini, editors, Philosophy of Mathematics: Truth, Existence and Explanation, Boston Studies in the History and Philosophy of Science, 2017. Online at https://academic.oup.com/philmat/advance-article-abstract/doi/10.1093/philmat/nkx031/4656246?redirectedFrom=fulltext.
  • Baldwin, John T. Foundations of Mathematics: Reliability AND Clarity: the explanatory role of mathematical induction, Wollics 2016. Online at http://homepages.math.uic.edu/~jbaldwin/pub/fundrelclarity2.pdf.
  • Baldwin, John T. Completeness and Categoricity (in power): Formalization without Foundationalism. The Bulletin of Symbolic Logic / Volume 20 / Issue 01 / March 2014, pp 39-79.
  • Baldwin, John T. Formalization, Primitive Concepts and Purity. `philosophical’, appendix with Bill Howard gives a geometric proof that every Desarguesian plane is embeddable in three space: Review of Symbolic Logic vol 6, 2013. Online at http://homepages.math.uic.edu/~jbaldwin/model11.html.
  • Chakrabortty, Mihir and Michèle Indira Friend. Mathematical Pluralism, Special Issue of the Journal of the Indian Council of Philosophical Research, Springer. JICPR Vol. 34.2 2017
  • Chemla, Karine, R. Chorlay, D. Rabouin (eds.) The Oxford Handbook of Generality in Mathematics and the Sciences, Oxford University Press, 2016.
    Reviews: Jenny Boucard, Revue d’histoire des sciences, 70, 1, 2017, p. 238-241. Vincenzo De Risi, Early Science and medicine, 22, 4, 2017, p. 399-403. David Rowe, Isis, 108, 4, 2017, p. 872-873.
  • Chemla, Karine, and Evelyn Fox Keller (eds.) Cultures without culturalism: The making of scientific knowledge, Duke University Press, 2017.
    Review: Yeang Chen-Pang, East Asian Science, Technology and Society: An International Journal, 11, 2017, p. 463–466.
  • Chemla, Karine, Guest editor of two special issues of the journal East Asian Science, Technology and Medicine, 43 and 44 (2016) entitled Numerical Tables and Tabular Layouts in Chinese scholarly documents (I and II) (vol. I (March 2017), vol. II (April 2017)).
  • Chemla, Karine. Changing mathematical cultures, conceptual history and the circulation of knowledge. A case study based on mathematical sources from ancient China. In K. Chemla and E. Fox Keller (eds.), Cultures without culturalism: The making of scientific knowledge, Duke University Press, 2017, p. 352-398.
  • Daniel Morgan and Karine Chemla. Writing in Turns : An Analysis of Scribal Hands in the Bamboo Manuscript Suan shu shu suan筭數書 (Writings on Mathematical Procedures) from Zhangjiashan Tomb No. 247. Silk and Bamboo, 1, 2018, p. 152-189.
  • Chemla, Karine. Abstraction as a value in the historiography of mathematics in ancient Greece and China. A Historical approach to comparative history of mathematics, In Geoffrey Lloyd, and Jingyi Jenny Zhao, with Qiaosheng Dong (eds.) Ancient Greece and China Compared, Cambridge University Press, 2017, Forthcoming.
  • Chemla, Karine. Numerical tables in Chinese writings devoted to mathematics: From early imperial manuscripts to printed Song-Yuan books, East Asian Science, Technology and Medicine, 44, 2016 (2017), p. 69-121.
  • Chemla, Karine. The Value of Generality in Michel Chasles’s Historiography of Geometry. In K. Chemla, R. Chorlay and David Rabouin (eds.), The Oxford Handbook of Generality in Mathematics and the Sciences, Oxford University Press, 2016, p. 47-89.
  • Chemla, Karine, Renaud Chorlay and David Rabouin. Prologue: Generality as a component of an epistemological culture. In K. Chemla, R. Chorlay and David Rabouin (eds.), The Oxford Handbook on Generality in Mathematics and the Sciences, Oxford University Press, 2016, p. 1-41.
  • Chemla, Karine, Evelyn Fox Keller. Cultures without culturalism in the making of scientific knowledge. Introduction. In K. Chemla and E. Fox Keller (eds.), Cultures without culturalism: The making of scientific knowledge, Duke University Press, 2017, p. 1-25. Online at
    https://www.dukeupress.edu/Assets/PubMaterials/978-0-8223-6372-9_601.pdf.
  • Chemla, Karine. Reading The History Manifesto as a historian of mathematics in ancient China, Isis, 107 (2), 2016, p. 324-333. Online at http://www.journals.uchicago.edu/doi/pdfplus/10.1086/687222.
  • Chemla, Karine. Numerical Tables and Tabular Layouts in Chinese scholarly documents: An introduction (part I): On the work to produce tables and the meaning of their format, Introduction to volume 1 of a special issue, entitled Numerical Tables and Tabular Layouts in Chinese scholarly documents (I), East Asian Science, Technology and Medicine, 43, 2016 (2017), p. 9-15.
  • Chemla, Karine. Numerical Tables and Tabular Layouts in Chinese scholarly documents: An introduction (part II): Synchronic and Diachronic approaches to the texts of tables, Introduction to volume 2 of a special issue entitled Numerical Tables and Tabular Layouts in Chinese scholarly documents (II), East Asian Science, Technology and Medicine, 44, 2016 (2017), p. 11-20.
  • Chemla, Karine. What can be derived from Evelyn Fox Keller’s article about scientific cultures? Some thoughts about language and scientific activity, EASTS. East Asian Science, Technology, and Society, An International Journal, 11, 3, 2017, p. 411-416.
  • Chemla, Karine. La diversité des cultures mathématiques: un passé et quelques futurs possibles, Gazette des mathématiciens, 150, 2016, p. 16-30 (http://www.smf.emath.fr/files/150-bd.pdf). English translation under the title: “The Diversity of Mathematical Cultures: One Past and Some Possible Futures”, in: Newsletter de l’EMS (European Mathematical Society), 104, June 2017, p. 14-24 (http://www.ems-ph.org/journals/newsletter/pdf/2017-06-104.pdf).
  • De Toffoli, Silvia. ‘Chasing’ The Diagram – The Use of Visualizations in Algebraic Reasoning, The Review of Symbolic Logic, Volume 10, Number 1, pp. 158-186, 2017. Online at https://www.cambridge.org/core/journals/review-of-symbolic-logic/article/chasing-the-diagramthe-use-of-visualizations-in-algebraic-reasoning/7AD347E6E53915D8241EE2B5EFFACC6F.
  • Friend, Michèle. Remarks of a Philosopher of Mathematics and Science; Commentary on Louis Kauffman’s Cybernetics, Reflexivity and Second-Order Science, in Alexander Riegler (ed.) New Horizons for Second-Order Cybernetics. Series on Knots and Everything, Vol. 60. Alexander Reigler, Karl H. Müller & Stuart A. Umpleby (Eds.) World Scientific, pp. 327 – 333. 2018
  • Friend, Michèle. Mathematical Theories as Models. Humanizing Mathematics and its Philosophy; Essays Celebrating the 90th Birthday of Reuben Hersh. Bharath Sriraman (Ed.) Birkhäuser. DOI 10.1007/978-3-319-61231-7_21 2017
  • Friend, Michèle. Pluralism and “Bad” Mathematical Theories: Challenging our Prejudices. Paraconsistency: Logic and Applications. Koji Tanaka, Franz Berto, Edwin Mares and Paoli Francesco (eds.). Berlin: Springer. 2012 (Submitted April 2017, reviewed October, and asked to re-submit by mid-November 2017) Keeping Globally Inconsistent Theories Locally Consistent. Michèle Friend and María del Rosario Martínez-Ordaz. Submitted to Between Consistency and Inconsistency. Walter Carnielli and Jacek Malinowski (eds.) Trends in Logic XVI: Consistency, Contradiction, Paraconsistency and Reasoning – 40 Years of CLE.
  • Friend, Michèle. Inconsistency in Mathematics and Chemistry, invited submission to a special issue of Humana Mente Vol. 32 The Special Issue is: Beyond toleration? Inconsistency and pluralism in the empirical sciences. (Luis Estrada-González and María del Rosario Martínez-Ordaz eds.) ISSN: 1972 – 1293. pp. 31 – 51. 2017
  • Friend, Michèle. Varieties of Pluralism and Objectivity in Mathematics, in Mathematical Pluralism, Special Issue of the Journal of the Indian Council of Philosophical Research, Mihir Chakraborty and Michèle Friend (Guest Editors) Springer. JICPR Vol. 34.2 pp. 425 – 442. DOI 10.1007/s40961-061-0085-3. ISSN: 0970-7794. pp. 425 – 442. 2017
  • Friend, Michèle, and Daniele Molinini. ‘Using Mathematics to Explain a Scientific Theory’ Philosophia Mathematica. Vol. 24, issue 2, June 2016. DOI: 10.1093/philmat/nkv022 pp. 185 – 213. 2016
  • Friend, Michèle. On the Epistemological Significance of the Hungarian Project. Synthese, special edition: Logic and Relativity Theory. Vol. 192, Issue 7 (2015), pp. 2035-2051 DOI 10.1007/s11229-014-0608-x 2015
  • Friend, Michèle. ‘Embracing the Crisis in the Foundations of Mathematics’ in La Crise des fondements: quelle crise? François Lepage & Karine Fradet (eds.) Les Cahiers d’Ithaque Revue de philosophie de l’Université de Montréal. Pp. 27 – 43. 2013
  • Gutiérrez, R. (2017), Living mathematx: Towards a vision for the future. Philosophy of Mathematics Education, 32(1).
  • Hellman, Geoffrey. Hilary Putnam’s Contributions to Mathematics, Logic, and the Philosophy Thereof, Harvard Review of Philosophy 24:117-119 (2017).
  • Hellman, Geoffrey with Roy Cook. Extendability and Paradox, to appear in a volume of essays, Putnam on Mathematics and Logic, eds. Roy Cook and Geoffrey Hellman, Springer Verlag (forthcoming).
  • Hellman, Geoffrey with Stewart Shapiro. Predicativity and Regions-based Continua, to appear in a volume of essays honoring Solomon Feferman, eds. Wilfried Sieg and Gerhard Jaeger, Springer Verlag (forthcoming).
  • Høyrup, Jens, Algebra in Cuneiform: Introduction to an Old Babylonian Geometrical Technique. Berlin: Edition. Open Access, 2017.
  • Høyrup, Jens, “Practitioners – School Teachers – ‘Mathematicians’: The Divisions of Pre-Modern Mathematics and Its Actors”, pp. 207–224, in: John M. Steele & Mathieu Ossendrijver (eds), Studies on the Ancient Exact Sciences in Honor of Lis Brack-Bernsen. Berlin: Edition Topoi, 2017.
  • Høyrup, Jens, “Archimedes – Knowledge and Lore from Latin Antiquity to the Outgoing European Renaissance”. Ganita Bharatī39 (2017), 1–22.
  • Høyrup, Jens, “What Is Mathematics: Perspectives Inspired by Anthropology”, pp. 179–196, in: John W. Adams, Patrick Barmby & Alex Mesoudi (eds), The Nature and Development of Mathematics: Cross Disciplinary Perspectives on Cognition, Learning and Culture. London & New York: Routledge, 2017.
  • Høyrup, Jens, “What Is ‘Geometric Algebra’, and What Has It Been in Historiography?”. AIMS Mathematics 2 (2017), 128-160.
  • Islami, Arezoo, “Mathematics as Hammer: The Makings of the Masters Tool”, (Book review), Metascience 2017. https://www.arezooislami.com/research/
  • Islami, Arezoo, “Marriages of Mathematics and Physics: A Challenge for Biology” (With Giuseppe Longo), Journal for Biophysics and Molecular Biology, 2017. ww.arezooislami.com/research/
  • Kennedy, Juliette, Turing, Gödel and the “Bright Abyss”, in: Philosophical Explorations of the Legacy of Alan Turing (edited by J. Floyd and A. Bokulich), Proceedings of the conference Turing 100 at Boston University, November 2012, Springer, 2017.
  • Kennedy, Juliette, Three Moments in the Life of the Mathematical Diagram: Notes on the Syntax/Semantics Distinction, for the volume Mathematical Concepts edited by L. de Freitas, N. Sinclair and A. Coles. Cambridge University Press, 2017.
  • Kennedy, Juliette, Squeezing Arguments and Strong Logics, with J. Väänänen, Proceedings of LMPS 2016, Hannes Leitgeb, Ilkka Niiniluoto, Elliott Sober, and Paäivi Seppälä, editors, 2017.
  • Kennedy, Juliette, Gödel’s Reception of Turing’s Model of Computability: the “Shift of Perception” in 1934, Proceedings of CiE 2017, Unveiling Dynamics and Complexity, 13th Conference on Computability in Europe, CiE 2017, Turku, Finland, June 12 – 16, 2017. Jarkko Kari, Florin Manea, Ion Petre (eds.) Lecture Notes in Computer Science, vol. 10307 (2017).
  • Larvor, Brendan. From Euclidean Geometry to Knots and Nets (2017).
  • Larvor, Brendan. Why the Naive Derivation Recipe Model Cannot Explain How Mathematician’s Proofs Secure Mathematical Knowledge (2016). Philosophia Mathematica, 24 (3). pp. 401-404. ISSN 0031-8019.
  • Larvor, Brendan (2012) How to think about informal proofs. Synthese, 187 (2). pp. 715-730. ISSN 0039-7857
  • Mancosu, Paolo. Filosofia Lógica e Matemática: Confêrencia no Brazil, College Publications, London (2017). https://www.amazon.com/Filosofia-L%C3%B3gica-Matem%C3%A1tica-Confer%C3%AAncias-Portuguese/dp/1848902638/ref=sr_1_8?ie=UTF8&qid=1514010508&sr=8-8&keywords=paolo+mancosu.
  • Pambuccian, Victor; Struve, Horst; Struve, Rolf , Metric geometries in an axiomatic perspective. In: From Riemann to differential geometry and relativity, 413–455, Springer, Cham, 2017. Edited by Lizhen Ji, Athanase Papadopoulos and Sumio Yamada.
  • Panza, Marco. On Benacerraf’s Dilemma, Again. In F. Pataut (ed.), Truth, Objects, Infinity, Springer, Cham, Heidelberg, etc., 2017, pp. 63-92.
  • Panza, Marco with Domenico Napoletani and Daniele Struppa. Forcing optimality and Brandt’s principle. In  J. Lenhard, M. Carrier (eds.), Mathematics as a Tool, (Boston Studies in the Philosophy and History of Science 327), Springer, Cham, Heidelberg, etc., 2017, pp. 233-251.
  • Panza, Marco. Platonismes , Gazette des Mathématiciens, 152, 2017, pp. 23-41.
    Forthcoming
  • Panza, Marco with Mirna Dzamonja. Asymptotic quasi-completeness and ZFC, in W. Carnielli and J. Malinowski (eds.) Between Consistency and Inconsistency, Springer (Series Trends in Logic), Cham, Heidelberg, etc., 2018.
  • Panza, Marco. Was Frege a Logicist for Arithmetic?, in A. Coliva, P. Leonardi, S. Moruzzi (eds.), Essays in Memory Eva Picardi, Palgrave MacMillan, Basingstoke (UK), 2018
  • Secco, G.D. with L.C. Pereira. Proofs Versus Experiments: Wittgensteinian Themes Surrounding the Four-Color Theorem. In: M. Silva (Ed.) How Colours Matter to Philosophy. Synthese Library 388, 2017, pp. 289-308. (http://www.springer.com/us/book/9783319673974)
  • Secco, G.D. with N.S. Pugliese. On how formal logic is presented to the Brazilian students: a critical analysis. In Rutas didácticas y de investigación
en lógica, argumentación y pensamento crítico. Martínez, T. (Org.). 1ª ed. Ciudad de México: Academia Mexicana de Lógica A.C., 2016, v. 1, pp. 78-92. Online at https://www.academia.edu/30070010/On_how_formal_logic_is_presented_to_the_Brazilian_student_a_critical_analysis.
  • Secco, G.D. with M. Penafiel. Ideas para una didáctica dialógica de la lógica. In Rutas didácticas y de investigación
en lógica, argumentación y pensamento crítico. Martínez, T. (Org.). 1ª ed. Ciudad de México: Academia Mexicana de Lógica A.C., 2016, v. 1, pp. 155-169. Online at https://www.academia.edu/30070086/Ideas_para_una_didáctica_dialógica_de_la_lógica.
  • Secco, G.D. with P.M.R. Noguez. Operar e Exibir: Aspectos do Conhecimento Simbólico na Filosofia Tractariana da Matemática. Revista Portuguesa de Filosofia, v. 73, p. 1463-1492, 2017. Online at http://www.publicacoesfacfil.pt/product.php?id_product=1041.
  • Secco, G.D. Computadores nas práticas matemáticas: um exercício de microhistória. O que nos faz pensar. (PUCRJ), v. 25, pp. 105-122, 2016. Online at http://oquenosfazpensar.fil.puc-rio.br/index.php/oqnfp/article/view/513.
  • Secco, G.D. Anotações acerca de Symbolic Knowledge from Leibniz to Husserl. Revista Latinoamericana de Filosofía, v. XLI, pp. 239-251, 2015. Online at http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1852-73532015000200005&lng=es&nrm=iso&tlng=pt.
  • Sergeyev, Yaroslav D. Numerical infinities and infinitesimals: Methodology, applications, and repercussions on two Hilbert problems, EMS Surveys in Mathematical Sciences. Online at http://www.theinfinitycomputer.com/EMSS_Sergeyev.pdf.
  • Schlimm, Dirk. Review of José Ferreirós, “Mathematical Knowledge and the Interplay of Practices,” Philosophia Mathematica, 25(1):139–143, February 2017. (
    https://academic.oup.com/philmat/article-abstract/25/1/139/2669618)
  • Schlimm, Dirk. On Dedekind’s axiomatic approach to the foundations of mathematics. In K. Scheel, T. Sonar, and P. Ullrich (eds.), In Memoriam Richard Dedekind (1831–1916), pp. 75–82. WTM Verlag für wissenschaftliche Texte und Medien, Münster. 2017.
  • Schlimm, Dirk with Wilfried Sieg. Dedekind’s abstract concepts: models and mappings. Philosophia Mathematica, 25(3):292–317, October 2017.
    (https://doi.org/10.1093/philmat/nku021)
  • Van Bendegem, Jean Paul with Ronny Desmet. The complementary faces of mathematical beauty, Logique et Analyse, volume 60, nr. 237, 2017, pp. 87-106.
  • Van Bendegem, Jean Paul. The Tricky Transition from Discrete to Continuous. Constructivist Foundations, vol. 12, nr. 3, 2017, pp. 108-109.
  • Van Bendegem, Jean Paul. Laws of Form and Paraconsistent Logic. Constructivist Foundations, vol. 13, nr. 1, 2017, pp. 21-22.
  • Van Bendegem, Jean Paul. Review of Moktefi Amirouche and Francine F. Abeles (eds.), What the Tortoise Said to Achilles: Lewis Carroll’s Paradox of Inference. (Special double issue of The Carrollian, The Lewis Carroll Journal, no. 28, November 2016), Acta Baltica Historiae et Philosophiae Scientiarum, vol. 5, nr. 1, Spring 2017, pp. 101-105.
  • Van Kerkhove, Bart [co-author: Joachim Frans], “Mathematical aims beyond justification” (2017), Logique et Analyse, 60(237):5-24.
  • Van Kerkhove, Bart [co-authors: Joachim Frans & Sven Delarivière], “Mathematical explanation: A contextual approach” (2017), in: The Journal of Indian Council of Philosophical Research 34(2):309–329.
  • Van Kerkhove, Bart [co-authors: Joachim Frans & Isar Goyvaerts], “Model-Based Reasoning in Mathematical Practice” (2017), in: Lorenzo Magnani & Tommaso Bertolotti (eds.), Springer Handbook of Model-Based Science, Springer:537-49.
  • Van Kerkhove, Bart [co-author: Sven Delarivière], “The `Artificial Mathematician’ objection: exploring the (im)possibility of automating mathematical understanding” (2017), in: Bharath Sriraman (ed.), Humanizing Mathematics and Its Philosophy: Essays Celebrating the 90th Birthday of Reuben Hersh, Birkhäuser:173–98.